
Eckhard Bick, CG-3 how-to 4/2009

Basic Constraint Grammar Tutorial for CG-3 (Vislcg3)

This text constitutes a fairly complete manual for the CG-3 compiler formalism, but it is also intended
as a tutorial for computational linguists who have not so far used Constraint Grammar in their work, or
have been using an older implementation, such as Vislcg, CG-2 or CG-1. Thus, usage and linguistic
examples are provided throughout the text. For the same reason, grammar architecture, linguistic-
expressive issues and application perspectives are discussed where relevant.

1. Command-line usage:

Once installed on your system, the CG-3 compiler can be run command line or as a background service
for other programs, reading input from a Unix pipe or file. Basic parameters are a grammar (--
grammar) and encoding information (e.g. utf8 or iso-latin). Optionally, specific grammar sections can
be activated in isolation (--sections), certain rule types can be inactivated (--no-mappings), and rule
actions can be traced (--trace).

● standard call: vislcg3 --grammar rulesfile, vislcg3 -g rulesfile

● without mapping rules (affects ADD and MAP): --no-mappings

● with rule-number traces for debugging: --trace, -t

● limited number of n least heuristic constraint sections: --sections n, --sections n-m, -s n

● special mapping prefix (default is '@'), e.g. '§': --prefix §, --prefix '§', -p §, not --prefix='§'

● UTF-8 input (”codepage”): -C UTF-8

Standard morphosyntactic grammars: Ordinarily, input is piped from a lexicon-based
morphological multitagger, or a lower level of Constraint Grammar (annotated corpus), but input from
probabilistic taggers (Treetagger, TnT, Brill etc.) can also be used, in which case the first rule section
typically will be a correction grammar rather than a morphological disambiguation grammar. In order
to prevent syntactic rules from interfering with morphological ones (by being run on morphologically
not-yet disambiguated input), it is recommended to run vislcg3 twice – first without, then with
syntactic mapping. Finally, disambiguated/tagged output can be piped directly to a file, or processed
with layout filters or further grammars in other formalisms (constituent grammar, dependency
grammar, field grammar etc.).

● cat textfile | multitagger | vislcg3 -C UTF-8 --grammar rulesfile --no-mappings | vislcg3 -C
UTF-8 --grammar rulesfile | postfilter > textfile.cg

● with tracing: Use --trace after the grammar that you want to debug. Chaining several --trace
grammars will work with vislcg2, but give odd results in vislcg3

Eckhard Bick, CG-3 how-to 4/2009

Multitagger or other input has to deliver so-called verticalized text, i.e. one token pr. line, with non-
punctuation tokens followed by a cohort of one or more possible analysis, indented, one pr. line.
Conventionally, cohort lines start with the lexeme or base-form (in quotes), followed by word class
(PoS) and inflexion tags in upper case. Secondary tags, meant to be used as disambiguation context, but
not intended for disambiguation themselves, such as subclass, valency and semantic tags, should be
placed in <...> brackets between lexeme and word class tags:

word form
 “lexeme-1” <valency> .. <semantics> .. POS-1 INFLEXION
 “lexeme-1” <valency> .. <semantics> .. POS-2 INFLEXION
 “lexeme-2” <valency> .. <semantics> .. POS-3 INFLEXION
 “lexeme-2” <valency> .. <semantics> .. POS-4 INFLEXION

Output after CG will look like this:

"<he>"
 "he" PERS MASC 3S NOM @SUBJ>
"<could>"
 "can" <aux> V IMPF @FS-STA
"<see>"
 "see" <vq> <mv> V INF @ICL-AUX<
"<a>"
 "a" <indef> ART S @>N
"<red>"
 "red" <jcol> <S:14> ADJ POS @>N
"<house>"
 "house" <build> N S NOM @<ACC
"<$.>"

Or, with --trace, to identify rule numbers used:

"<he>"
 "he" PERS MASC 3S NOM @SUBJ> MAP:2734
"<could>"
 "can" <aux> V IMPF MAP:1584 @FS-STA ADD:1590 ADD:1595 MAP:2477
"<see>"
 "see" <vq> <mv> V INF ADD:1621 ADD:1637 @ICL-AUX< ADD:1621 ADD:1637 MAP:2194
; "see" <vq> V PR -3S ADD:1621 REMOVE:5211
; "see" <vq> V IMP ADD:1621 REMOVE:5211
"<a>"
 "a" <indef> ART S @>N MAP:2161
"<red>"
 "red" <jcol> <S:14> ADJ POS @>N MAP:1758
; "red" <color> <S:16> <first> N S NOM SUBSTITUTE:1532 SUBSTITUTE:1544 REMOVE:4681
"<house>"
 "house" <build> <HH> <second> <S:135> <nhead> N S NOM SUBSTITUTE:1532
SUBSTITUTE:1545 SELECT:5681 @<ACC SUBSTITUTE:1532 ADD:1722 MAP:2771
; "house" V PR -3S ADD:1621 REMOVE:5218
; "house" V IMP ADD:1621 REMOVE:5320
; "house" V INF ADD:1621 SELECT:5681
"<$.>"

Note that removed lines are still shown, but marked with a ';' – allowing easier debugging. Secondary
programs can be used to filter this output in various ways. The author, for instance, uses the following:

1. niceline.perl (condenses output to one-line cohorts)

Eckhard Bick, CG-3 how-to 4/2009

2. hilite_cg 31 '@.*' (colours syntactic @-fields red)

2. The rules file

A vislcg3 rules file consists typically of the following sections:

DELIMITERS (1 line, defines sentence boundaries)

SETS (1 or more sections of set definitions, compiled as one)

CORRECTIONS (1 section of correction rules, replacing tags anywhere in a reading)

MAPPINGS (1 section of mapping rules, adding tags at the end of a reading line)

CONSTRAINTS (1 or more sections of REMOVE or SELECT rules)

END

The CG-3 compiler will use DELIMITERS to chunk the text into sentence windows, then define labels
for sets of tags or tag lists (SET section), and finally apply the rules in the order of occurrence, one
section at a time. CONSTRAINTS sections will be run iteratively. For special purposes, CG-3
recognizes a BEFORE-SECTIONS and a AFTER-SECTIONS section, that are only run once, to
respectively prepare or post-process an annotation.

Set sections contain LIST definitions of sets, written as lists of OR'ed tags or tag chains (in
parentheses). Once defined, sets may be combined into new sets with a SET definition, using set union
and set subtraction. Unlike earlier CG compilers, CG3 does in fact allow SET definitions anywhere in
the grammar, so a grammarian may choose to keep the more general definitions together in a separate
section, while keeping rule- or task-specific SET definitions close to the rule or rule section that uses
them.

Mapping and Correction sections have MAP/ADD and SUBSTITUTE rules, respectively.
These rules are applied in strict sequential order. In earlier CG implementations, MAP/ADD rules
could not "see" in their context conditions what earlier mapping rules had mapped, but this limitation
has been lifted in CG3, so it is now possible for instance, to let argument mapping rules refer to
previously mapped main verb and auxiliary tags.

Constraint sections will be interpreted as heuristicity batches, with safer rules in the first
sections, and more heuristic rules in later sections. Each section is repeated until no further of its rules
can be instantiated (i.e. meet their context conditions), then the next section is run and the first section
re-run after second-section disambiguation to check for changed contexts. After that, a third section is
run, and the lower ones rerun: 1 – 2 1 – 3 1 2 – 4 1 2 3 ... etc. The --sections n flag can limit this
reiteration to sections 1 through n , or even select a range (or ranges) of sections, e.g 3-7,9-10.

Since CG-3 allows any rule type to occur anywhere in the grammar, a neutral SECTION header has
been introduced to optionally replace the traditional CONSTRAINTS, MAPPINGS and CORRECTIONS
headers.

Eckhard Bick, CG-3 how-to 4/2009

Unlike its predecessors CG-2 and Vislcg, CG-3 always applies rules in the order they occur in the
grammar, and will try to apply a given rule to all cohorts in the window before moving on to the next
rule.

Each set definition or rule is terminated with a semicolon, but can run over several lines. As in several
programming languages, the #-symbol marks the rest of a line as a comment.

3. The individual elements and functors of a CG grammar file

3.2. Delimiters

The vislcg compiler applies rules within a certain context window, defined by delimiters. Typically,
delimiters will be sentence boundary markers (i.e. punctuation), but paragraphs, corpus section markers
or even specific stop-words could be used. Rules can refer to the boundaries with the reserved symbols
>>> (left boundary) and <<< (right boundary).

DELIMITERS = “<.>” “<!>” "<?>" ;

The example defines a full stop, exclamation mark or question mark as a delimiter. Note that
punctuation notation follows word form notation, with quotes and angle brackets. For the sake of
headlines and running input in general, it can be recommended to include a ”hard-break” introduced by
a preprocessor, e.g. ”<¶>”.

CG-3 can keep several windows in memory at any time in order to facilitate cross-window scanning
from contextual tests (using the W operator, with a default span of ±2 windows). It is also possible to
break a window into smaller windows on-the-fly with a DELIMIT rule anywhere in the grammar.

3.3. Set definitions

In both their targets and context conditions, CG rules can refer not only to words, lexemes and tags, but
also sets of words, lexemes or tags, or even combinations of these three types. Two kinds of set
definitions are used:

(a) LIST set-name =

followed by a list of tags or tag combinations (the latter in parentheses), separated by spaces. The list
constitutes the set, and a rule targeting a set is equivalent to a batch of rules targeting each set element
separately. Note that tag combinations are not, unlike CG2, order sensitive at the moment, i.e. (<vi>
<vt>) equals (<vt> <vi>). Therefore, if you wish to make this distinction, you should define composite
tags or create them with a preprocessor, e.g. <vi-vt> and <vt-vi>.

(b) SET set-name =

defining a new set as a mathematical operation on existing sets. Sets used in a SET definition, must
occur earlier in the grammar. Tags can be used as sets on the fly by enclosing them in parentheses.

Eckhard Bick, CG-3 how-to 4/2009

A set element can be:
● a tag, word form or lexeme, e.g. N [for noun], "<bought>" [word form] or "buy" [lexeme]
● a combination of (1), as a kind of "snapshot" from a reading, in parentheses. The snapshot may

have "holes" (i.e. interfering tags appearing in the reading but not in the set element). For
instance, (N M P) [for noun masculine plural], or (“eat” INF).

In a SET definition (b), sets can be combined with the following operators:

set union: OR or | , e.g. set1 OR set2 OR (tag3) OR (N F S)

concatenation (cartesian product): + , e.g. set1 + set2, yields all possible combinations of the 2 sets'
elements. Thus, a concatenation of LIST set1 = V and LIST set2 = INF GER PCP covers all non-finite
verb forms: (V INF) (V GER) (V PCP).

negation (match set difference): - , e.g. set1 but not set2, means set1 as long as the reading in
question does not contain elements from set2. Thus, rather than as just a removal of set2 elements form
the set1 list (i.e. defining list difference, as used in Tapanainen's cg2), vislcg3 interprets the minus
operation as a kind of NOT condition, so the presence of a set2 element in a reading will block and
override the presence of a set1 reading. Thus, (N) - (P) means non-plural nouns. If needed for
compatibility reasons or the like, the old, narrow list difference operator can still be had, using the ∆
symbol (U+2206).

The + and - operators have precedence over OR.

failfast: The ^ symbol can be used in both set operations (e.g. A ^ C OR B) and set definitions (LIST =
a b ^c). A set or list element prefixed by ^ will block instantiation of the entire set if matched in a given
reading, even if other elements of the set would otherwise make the set compatible with the cohort line
in question.

Note that all set operators, as well as the parenthesis convention for creating sets on-the-fly, can be
used in targets and context conditions of rules.

tag inversion: ! (exclamation mark) is used as a tag-prefix and means ”all but ..” or ”but not”, much
like the ^ fail fast prefix. However, ! is used in tag strings and context parentheses, while ^ is used in
set definitions or set operations. Thus, the latter (^) blocks OR'ed lists, while the former (!) blocks
AND'ed lists, if instantiated in a reading. (V !PAS), for instance, matches all verb forms that are not
passive, independently of e.g. tense and mood.

The formalism has a built-in magic set, (*), to denote ”everything”. The (*) set is an easy way to
navigate step-wise left or right in LINK'ed contexts, e.g. LINK -1 (*) LINK 1 ... to include the 0
position in an unbounded search (useful in complex vp's). The magic (*) set can also be used to negate
a set, e.g. (*) - (N) for all tokens that are not nouns. (*) - N is formally equivalent to (!N), but faster for
the compiler to match.

Eckhard Bick, CG-3 how-to 4/2009

3.4. Constraints

Constraint rules are ordered in sections, usually in order to separate safer rules (to be used earlier) from
more heuristic rules (to be used later). One and the same grammar can be run at different levels of
heuristicity by using the --sections n flag when calling Vislcg3, meaning that only the first (=safest) n
constraint sections of the grammar will be used.

A CG rule has the following general form, with [] brackets indicating optional elements:

["<Wordform>"] OPERATION TARGET [[IF] (CONTEXT-1) (CONTEXT-2) ...] ;

Consider the following examples:

(a) REMOVE VFIN IF (-1 ART) ;

(b) REMOVE (N) IF (-1 (PERS NOM)) ;

(a) will remove finite verb readings (the target) from a cohort, if the one immediately to the left (-1)
contains an article tag, while (b) will remove noun readings in the presence of an immediately
preceding personal pronoun in the nominative, thus disambiguating nominal-verbal ambiguities like hit
in ”the hit/they hit”.

Note that the target VFIN is a defined set (e.g. consisting of tense or mode tags), while the target
(N) is a simple tag, declared as a set on-the-fly by using parentheses.

 3.4.1 OPERATION:

(a) REMOVE

Removes a reading from a cohort, if it contains a TARGET'ed tag – unless this reading is the last
surviving reading. In the case of morphological or PoS tag this means that one (entire) reading line,
in a cohort of readings for a given token, will be removed – for instance the reading line "comer" V
PR 1S IND will be removed from the analysis cohort of "como", if either the V (verb) or PR
(present tense) tags are TARGET'ed by a successful REMOVE rule, leaving the "como" ADV
reading to survive. If the target is a MAP'ed tag with the predefined prefix (for syntax, usually a @-
tag), it is removed from the reading line, and if it is the only or last surviving MAP'ed tag, the whole
reading line will be removed (unless it is the last reading line in the cohort). If you explicitly wish to
allow the removal of a last reading, you can do so using the rule option UNSAFE, i.e. REMOVE
UNSAFE (TAG) IF, or globally through the --unsafe flag (which can be overridden locally by the
SAFE option).

(b) SELECT

Selects a reading, if it contains a TARGET'ed tag. In practice, selection is equivalent to a removal of
all other readings. In the case of @-tag target, the reading line is cleared of all other @-tags.

In ordinary mode, each operation will immediately affect (narrow) the contexts of subsequent rules.
This progressive and interactive disambiguation is one of the core strengths of the CG methodology
and should not be overridden lightly, but if you do want to have a rule look at already-deleted
contexts, you can do so with the LOOKDELETED option. A softer variant is the LOOKDELAYED

Eckhard Bick, CG-3 how-to 4/2009

option that will only look at information removed by a previous rule that has been specifically
scheduled for delayed removal with the DELAYED option. Individual contexts (rather than a whole
rule) can be made to see deleted material with the D-operator, and delayed-removed material with
the d-operator, e.g. (*-1d N-HUM). Finally, there is an IMMEDIATE option to override a global
--delayed flag.

 3.4.2 WORDFORM:

Optional part of a rule, restricting the rule to the word form in question. Since the operation is case
sensitive, preprocessing (lower-casing) is necessary, if a rule targeting e.g. an English noun also is to
apply if the noun occurs in sentence-initial position. VISL grammars use lower-casing of initials,
storing the uppercase information as a tag (<*>) instead.

WORDFORM may only be 1 wordform, and must not contain set operatons or tags. Otherwise, the
WORDFORM condition works like a context condition for position 0 (self).

 3.4.3 TARGET:

Obligatory part of a rule. A target is always a set, either a predefined set from the SETS section, or a
tag string defined as a set on-the-fly by using parentheses, e.g. NOMINAL (defined by LIST = N
ADJ PCP) or (N) or (N F P). Using predefined sets as targets, effectively fuses what in the CG-1
formalism was a same-context batch of multiple rules, into one rule:

SELECT NOMINAL IF (-1C DET) ;

(same as 3 rules targeting (N), (ADJ) and (PCP) separately).

 3.4.4 CONTEXT:

One or more contexts can be used, but (heuristic) rules without any context are allowed, too. Each
context is enclosed in parentheses. Contexts are applied as AND-linked conditions, i.e. all
conditions of a given rule must be true ("instantiated") for the rule to apply. A context condition
may contain the following elements:

(1) An obligatory position marker, consisting of a number indicating relative distance in tokens. The
default (positive number) is a right context, while a negative number indicates a left context. A
context can be negated by using NOT in front of the position marker. For LINK'ed contexts (cp.
below), NOT negates (only) the immediate context conditions (to which the adjacent position
marker applies), while NEGATE is used to ”open a negation bracket”, where the remaining
(LINK'ed) contexts are negated as a whole.

(2) An asterisk (*), prefixed1 to the position marker number means "unbounded context". In this case,
a context condition has to be true all the way to the left (-) or right (+) sentence boundary – even if
the context search should cross the TARGET position (position 0)2. A positive unbounded context
condition is instantiated at the closest possible position – unless a double asterisk (**) is used,
which will allow instantiation at the second or a later occurrence. Later instantiation is relevant
only in the presence of LINK'ed contexts (which might not be true of the first, but rather of a later
occurrence of the original condition). An at-sign (@) in front of a position number means absolute

1 Prefixing is the traditional convention, but theoretically the asterisk may appear anywhere in the position block.
2 In CG1, unbounded searches were not allowed to back-cross the 0-position, so in order to facilitate porting of older

grammars, CG3 support a --no-pass-origin flag to emulate this behaviour.

Eckhard Bick, CG-3 how-to 4/2009

context, e.g. @1 for the first token/cohort, @2 for the second, and @-2 for the second-but-last
token/cohort in the sentence.

(3) In CG-3 it is possible to search for the same context both left and right at the same time. This is
called the nearest neighbour test, and is expressed by using the ”magic” position 0, e.g. (NOT *0
VFIN) to exclude finite verbs in the whole sentence

(4) An obligatory context condition consists of a (position-restricted) set (or set-ified tags or tag
sequences). As elsewhere, sets may be combined by set operators: OR (or '|', union), +
(concatenation in one and the same reading line). The old Vislcg AND (or '+', intersection, both
tags in the same cohort, but not necessarily in the same reading), has been deprecated in favour of
the equivalent LINK 0.

(5) A C (careful) condition attached to the position number means that the context condition has to be
a safe (i.e. the only) reading of the cohort in question. For instance, (-1C N) denotes an
unambiguous noun one position to the left (i.e. left adjacent). A word with both a noun (N) and a
verb (V) reading in this position would not fulfill the context condition. Note that in connection
with an unbounded search, a C condition may make the search “jump” ambiguous occurrences of
the same context, a potentially unintended behaviour that however can be blocked by a BARRIER
condition for the same context (cp. (7) below), i.e. *1 (X) BARRIER (X). In other words, without
the BARRIER *1C (X) behaves like **1 (X) LINK NOT 0 (*) - (X).

(6) An optional linked context, where the word LINK chains 2 contexts (within the same context
parenthesis). The second, linked context condition is written in the same fashion as the first one,
but its relative position is calculated from the instantiated first context rather than the rule target.
In other words, each LINK resets the context position to 0. In this way, it is possible to create
arbitrarily long chains of LINK'ed context conditions. In practice, most links in a chain point to the
same side (i.e. either right or left), but a change of direction is perfectly in order.

(7) An optional barrier context, where the word BARRIER is used right after an unbounded context
(*-context). A barrier context blocks the preceding context search, if the barrier condition is
instantiated before the unbounded context can be instantiated. As usual, barrier contexts may
consist of sets, set-ified tags or set combinations, but do not need a position marker. For instance,
(*1 VFIN BARRIER CLB) looks for a finite verb (VFIN) anywhere to the right (*1), but only if
there is no interfering clause boundary (CLB) in between. A subordinator or comma would thus
block further VFIN-searching. The BARRIER keyword can be used in careful mode, too
(CBARRIER), where only unambiguous readings will block the search. For NEGATEd contexts,
CBARRIER is the recommended option.

(8) In order to continue a context search across window boundaries, use Span Left (<) and Span
Right (>) as a pre- or postfix for the position block, e.g. <*-1 (left) or >*1 (right). Using 'W'
instead of the arrows will allow a span to search in both directions. As a default, the span covers 2
windows left and 2 windows right of the focus window, but the number can be set arbitrarily with
the --num-windows command line flag. For instance (*-1 >>> LINK -1W (”<:>”) LINK -1 V-
QUOTE) will check if the preceding sentence ends in a colon, after a quoting verb, making the
second sentences a quotation ”object” of the first.

Eckhard Bick, CG-3 how-to 4/2009

Eckhard Bick, CG-3 how-to 4/2009

3.5. Mappings

A MAPPING-rule has the following general layout:

 OPERATION (MAPTAG-1 MAPTAG-2 ...) (TARGET) IF (CONTEXT-1) ... (CONTEXT-n)

The following rule, for instance,

MAP (@SUBJ> @ACC>) TARGET N OR (PERS NOM)

IF (NOT *-1 NON-PRE-N) (1C VFIN) ;

will map potential subject and accusative object tags onto nouns an personal pronouns in the
nominative, if there are no non-prenominals to the left (i.e. if the np in question is the first in the
sentence), and if a safe (C) verb follows immediately to the right.

Mapping rules add tags to a cohort line (i.e. reading), if that line contains a certain TARGET tag or
matches a certain TARGET set, and if certain optional CONTEXTs are fulfilled. Context conditions
are expressed as in the CONSTRAINT section, and sets are used and constructed in the usual way. Any
kind of tag may be added. However, only mapped tags with a special mapping-prefix (by default, @)
will be treated as real mapped_tags. Mapped_tags are traditionally syntactic tags, added and
disambiguated on the surviving cohort line after morphological disambiguation (the line itself
representing a PoS/inflexion reading), but can be used in many other ways:

1. Mapping of secondary tags that may be necessary for morphological disambiguation, but
are context dependent and cannot, therefore, be added from the lexicon. Candidates are
auxiliary/main verb markers, punctuations correction, marking of multi-word expressions.

2. Mapping of higher level tags, like semantic role tags or named entity tags.

3. Early syntactic mapping, before morphological disambiguation, to exploit syntactic
constraints for indirect part-of-speech constraining.

During disambiguation, @tags will be cut down to the last reading on a given line. If there is only
one reading line in the cohort, this last @tag is untouchable3, otherwise the whole reading line dies
together with its last @tag. When calling a grammar with Vislcg3, the @-prefix may be changed by
using the --prefix ... flag.

The following OPERATIONs are allowed in mapping rules:

● MAP: This is the general mapping operator. It is a feature of the special @tags, that MAP rules
cannot apply if the targeted cohort line already contains one or more @tags (from an earlier MAP
rule or the lexicon). Thus, if ambiguity is desired, the @tags in question have to be MAP'ed at
the same time (i.e. by the same rule). In order to allow further mapping, ADD rules have to be
used instead of MAP rules.

● ADD: Mapping of @tags is performed independently of the presence of other @tags on the cohort
line. Thus, @-mapping may continue until a MAP rule "closes" the @tag-list for a given cohort
line. Hoever, @tags in the input, from the lexicon or an earlier CG module, will block both MAP,
ADD and REPLACE readings.

3 This restriction may be overridden, if necessary (REMOVE UNSAFE or UNMAP), and special rule flags will allow the
grammarian to refer to deleted MAP readings.

Eckhard Bick, CG-3 how-to 4/2009

● REPLACE: This is a CG-2 operator retained in Vislcg and CG-3, but often disused by grammarians
in favour of the new and more powerful SUBSTITUTE operator. REPLACE deletes all tags but
the first one (normally the lexeme tag), and adds the mapped tags instead.

Unlike constraint rules, mapping-rules are applied exactly once and mapping rule sections are not rerun
together with higher order constraint sections. And since mapping rules are applied before other rules,
they are located together within a MAPPING section (also called BEFORE-SECTIONS in CG-3)..

3.6. Corrections/Substitutions

Correction rules (or – more neutrally – substitution rules) were originally introduced to correct faulty
input – for instance from a probabilistic tagger or an earlier CG, or in a spell/grammar checker – by
replacing tags with other tags. Deletion can be handled by nil-replacements (*), and insertion by
replacing a tag with an appended version containing both the old and the new, inserted tag.

The general shape of a correction rule is the following:

SUBSTITUTE (TAG-1) (TAG-2) TARGET (TAG-3) IF (CONTEXT-1) ... (CONTEXT-2)

Here, TAG-1 is replaced with TAG-2 in cohort lines that contain the target tag TAG3 with (optional)
context conditions structured in the usual fashion. As usual, on-the-fly sets (as in the example) can be
used on par with predefined or combined sets. For instance, the following rule:

SUBSTITUTE (PRON) (CONJ) TARGET (”that”) IF (-1 T:pp LINK -1 <v-speak>)

corrects a pronoun-”that” reading (e.g. from a probabilistic PoS tagger) into a conjunction.-”that”
reading, if ”that” is preceded by a prepositional-phrase template (T:pp) and a speech verb: He had
promised on an earlier occasion that he would not interfere.

Substitution rules are also a work-around for changing tag lines after ”closure” with a @-tag. Thus,
even @tags themselves can be changed, removed or appended in this way:

SUBSTITUTE (@SUBJ) (@SUBJ @ACC) TARGET (N) (-1 >>>) (1 (PERS NOM)) ;

(a previously safe noun subject is assigned object ambiguity at sentence initial position if the next word
to the right is a personal pronoun in the nominative: 'Fish I do like.')

For deletions, use SUBSTITUTE (deletable) (*) TARGET ...4

For adding secondary tags, use SUBSTITUTE (PoS) (<secondary> PoS) TARGET ..., where PoS is a
part-of-speech tag. Since the PoS tag is conventionally the first primary (morphological) tag in a cohort
line, this will ensure that the new secondary tag is placed correctly between lexeme/lemma tag and
morphological tags.

Ordinaryly, SUBSTITUTE rules are used in the mapping section, to be run once. However, they can be
used in ordinary sections, and will then be repeated like ordinary rules. This may be the desired

4 The (*) denotes a magical ”deletion tag”, that could also simply be empty, ().

Eckhard Bick, CG-3 how-to 4/2009

behaviou, if a SUBSTITUTE depends on a safe context which will only materialize as disambiguation
progresses. However, when using SUBSTITUTE rules in ordinary sections, you will have to make sure
that endless loops are prevented, since two SUBSTIUTE rules, such as a deleting and an inserting one,
may cancel each other's effects.

It is possible to substitute a tag chain rather than a single tag, but conflicts may arise between the
grammarian's expectation of fixed word order on the one hand, and CG-3's internally free tag order on
the other hand. If two non-adjacent tags are included together in the from part of a substitution rule,
you should expect all tags between them to disappear, too.

4. Dependency

Traditional Constraint Grammar syntax can be described as flat dependency syntax, with directional
attachment markers at least at the group level, and in newer grammars also at the clause constituent
level, allowing postprocessing with a dependency generator. CG-3 is the first public Constraint
Grammar implementation that allows direct reference to dependency links, as well as from-scratch
insertion of dependency arcs.

Dependency tags have the form #n->m or #n m→ , where n is the daughter token id and m is the mother
token id. Annotated input data has to adhere to this convention in order to be accessible to the CG
rules.

There are 3 possible dependency references, to be used instead of the ordinary position markers in
contexts conditions:

p (parent, mother)
c (child, daughter)
s (sibling)

ADD (§AG) TARGET @SUBJ (p V-HUM LINK c @ACC LINK 0 N-NON-HUM) ;

(Add an AGENT tag to a subject reading if its parent verb is a human verb that in turn has a child
accusative object that is a non-human noun.)

In order to add dependency annotation to ”virgin” input, the operators SETPARENT and SETCHILD
are used together with a TO target. Thus,

SETPARENT @FS-<ACC (*-1 (”que”) BARRIER CLB
 TO (**-1 <mv> LINK 0 V-COGNITIVE) (NOT 1 @<ACC);

will link a finite object clause (@FS-<ACC) with a que-complementizer to a main verb (<mv>)
anywhere to the left (**-1) if the latter is a cognitive verb (V-COG) and is not followed by an ordinary
direct object (@<ACC). If the sub-clause and main-clause verbs have the token id's #10 and #5, the
result will be the following dependency tag:

... VFIN ... @FS-<ACC #10->5

Eckhard Bick, CG-3 how-to 4/2009

Note that both the SET-target and the TO-target can have their own independent context conditions,
counting from their respective positions as zero. Attachment will thus be made to the final match of the
first context (i.e. parenthesis) after TO, while any further contexts after TO will relate to attachment
position as zero, not to the original zero of the SET-target.

CG3 has a built-in check against dependency loops, preventing SETCHILD from attaching if doing so
would create a loop. Instead, the rule will search onward for a valid, free parent that does not form a
loop relation with the target. A corresponding precaution is valid for SETPARENT. This behaviour can
be overridden with the ALLOWLOOP or the NEAREST options. The former will opt for the last
matching TO-target, the latter for the first.

Dependency relation operators can be combined with a number of options:

● * (Deep scan) allows a child- or parent-test to continue searching along a straight line of
descendants and ancestors, respectively, until the test condition is matched or until the end of a
relation chain is reached. Departing from subjects or objects, for instance, '*p VFIN', will find
the finite verb in the parent verb chain, even if the subject or object itself is linked to a non-
finite main verb.

● ALL or C5 requires a child- or sibling-relation to match all children or all siblings,
respectively. Note that this is different from the ordinary C (= safe) option which applies to
readings. Thus 'cC ADJ' or 'ALL c ADJ' means 'only adjectives as children' – e.g. no articles or
pp's, while 'c (*) LINK 0C ADJ' means 'any one daughter with an unambiguous adjective
reading6.

● NONE or NOT7 has the opposite effect of ALL - it means, that no child, or no sibling, may
match. Note that the option will negate the whole dependency. Thus, 'NONE c @>N' means
that there is no premodifier child, i.e. that all children are not premodifiers. If you want to find
a (just one) daughter that does not match, the format is 'c (*) LINK NOT 0 @>N', and the
context will be true even if there is another daughter that is a premodifier.

● S (Self) can be combined with c, p or s to look at the current target as well. For example, 'c
@SUBJ LINK cS HUM' looks for a human subject np – where either the head noun (@SUBJ)
itself is human, or where it has a modifier that is tagged as human.

Dependency tags may be referred to even if they are imported as part of the import cohorts, created
either by a non-CG module or by an earlier CG module in a grammar pipe. In this case newly assigned
dependencies will override old ones, but the input token numbering (and hence, sentence separation)
will be maintained in spite of the fact that the CG3 compiler internally uses a running token numbering
across sentence boundaries.

5. Other relational links than syntactic dependency

5 Because of the confusability of C, ALL is now the recommended form.
6At some stage, we intend to reserve 'C' to mean 'LINK 0C ADJ', so the combination 'ALL cC ADJ'
will be meaningful.
7 NONE is the recommended form, and NOT is deprecated here, because it may be confused with ordinary NOT

Eckhard Bick, CG-3 how-to 4/2009

The default relation between tokens is the dependency relation, but the CG-3 formalism also allows to
add secondary dependencies, or other relations like anaphora relations, discourse relations, secondary
”semantic” dependencies etc. This is done using named relations:

one-way relations:
SETRELATION (name) TARGET targetset [context] TO link-context [IF context]
two-way relations:
SETRELATIONS (name) (name) TARGET targetset [context] TO link-context [IF context]

For instance, the following will set an ”identity” relation from a relative pronoun to a noun occurring
earlier in the sentence:

SETRELATION (identity) TARGET (<rel>) TO (*-1 N) ;

This will yield the following as an additional tag on the pronoun reading: ID:n R:identity:m,
where R: introduces the relation name, n is the ID of the pronoun, and m the ID of the noun. The two-
way operator SETRELATIONS, with two label brackets, one for each end of the relation arc, can be
used to mark a given relation on both ends with different names, e.g. an experiencer-stimulus relation.

SETRELATION(S) overrides (removes) any previous relation(s) with the same name. For multiple
relations of the same name, use ADDRELATION (one-directional) and ADDRELATIONS (two-
directional) instead.

In order to remove relations individually, use REMRELATION or REMRELATIONS.

Note that CG3 can use contexts across several sentence windows, and thus assign long range relations,
such as cross-sentence subject anaphora (cp. Bick 20108).

Just like dependencies, other relation types will be visible to ordinary rules, and can be referred to in
subsequent contextual tests. To do so, use 'r:name' for the positional test, e.g. (r:identity HUM) to
check if a pronouns antecedent is human. The ALL or NONE operators are also allowed with relational
tests, and may be useful, depending on the type of relations you are working with.

8 Bick, Eckhard (2010), A Dependency-based Approach to Anaphora Annotation, in: (eds.) Extended Activities
Proceedings, 9th International Conference on Computational Processing of the Portuguese Language Apr. 27-30. Porto
Alegre, Brazil. pp. xxx. ISSN 2177-3580 (Extended, original version:
http://visl.sdu.dk/~eckhard/pdf/PROPOR2010_anaphora_submit.pdf)

http://www.inf.pucrs.br/~propor2010/proceedings/regular_papers/Bick.pdf

Eckhard Bick, CG-3 how-to 4/2009

6. Interfacing with other descriptive systems and parsing methodology

One of the design goals of CG3, and a motivation for continued development, is the desire to allow
Constraint Grammar to not only support its native descriptive paradigms, functional dependency
grammar and topological methods, but also to emulate other descriptive systems and their parsing
methodologies. From a principled point of view, three competitors have to be considered – (a)
generative grammar with a constituent tree notation, (b) unification grammar and (c) probabilistic and
machine learning.

CG3 addresses (a) in two ways: First, its deep dependency annotation simply allows the
transformation into constituent trees, creating various treebank formats – like the one used in the PENN
treebank – on the fly. An example of a program performing such a transformation, is the author's
dep2tree, supporting the VISL convention of constituent trees notation. Second, the core idea of
generative parsing – constituent bracketing – can in part be simulated using so called TEMPLATEs.

On the other hand, CG3 was inspired by unification grammar (b) to allow the unification of set
variables across targets and contexts. Finally, probabilistic methods (c) have also been accommodated
for in the new formalism, by allowing reference to numerical tags expressing statistical information
learned from raw or annotated corpora.

7. Templates

TEMPLATEs are labels for complex contexts conditions, which – once defined – can then be used by
many different rules, or even in other templates. For instance, an np could be defined as

(a) TEMPLATE np = (? ART LINK 1 N) OR (? ART LINK 1 ADJ LINK 1 N)

(b) TEMPLATE np = ([ART, N]) OR ([ART,ADJ,N])

(c) TEMPLATE np = ? ART LINK *1 N BARRIER NON-PRE-N

and then referenced as

(*1 VFIN LINK *1 T:np).

Note that templates can be defined either as a consecutive list of sets (b), in angular brackets, or as a
LINK'ed context (a), CG-style, in ordinary context brackets. Though the former is more reminiscent of
generative rewriting rules, the latter is more powerful, since it will allow complex unbounded links (* -
links) and thus can cover more cases in one and the same expression (c).

The linguistic motivation behind templates is to allow direct references to constituent units, just
as in generative grammar. Thus, classical constituent templates are designed to reduce constituents to
”terminals” – on par with cohort tags and sets, and will be used like the latter, forming contexts
together with an ordinary external position marker, as in the example above.

However, CG-internally, templates could also simply be interpreted as shorthand (variables) for
context parentheses, so-called context templates. As such, they logically need to allow internal,
predefined positions, as in the following example for a human verb-template, where the motivation is
not a constituent definition, but simply to integrate two context alternatives into one9, and to label the
result with one simple variable.

9 In traditional CG, this OR'ed expression could not even be expressed in one rule, let alone referenced as one label.

Eckhard Bick, CG-3 how-to 4/2009

TEMPLATE v-hum = (c @SUBJ + HUM) OR (*1 (”that” KS) BARRIER V)

Compiler-internally, both template types are processed in a similar way, which is why constituent
templates have question marks or 0-positions as place holders for an external position marker, which
will be inserted into the template by the compiler at run-time (”position override”).

Constituent templates allow a direct conceptual transfer from generative rules. Thus, a simple
generative np grammar:

np = adjp? n pp? ;

adjp = adv? adj ;

pp = prp np ;

could be expressed in CG3 as:

 TEMPLATE adjp = ((ADJ) OR (ADV LINK 1 ADJ)) ;

 TEMPLATE pp = (PRP LINK 1 N) OR (PRP LINK 1 adjp LINK 1 N) ;

 TEMPLATE np = ((N)

OR (T:adjp LINK 1 N)

OR (T:adjp LINK 1 N LINK 1 T:pp)

OR (N LINK 1 T:pp)) ;

Note that order is important - if a template uses another template that has not been defined yet, the
compiler will die. As a consequence of this, so far, CG3 does not allow cross-definition recursion in
templates10. Therefore, either a pp definition cannot itself contain an np template, or an np definition
cannot itself contain a pp template, i.e. in our example, the following cannot be used:

 not possible: TEMPLATE pp = (PRP LINK 1 T:np) ;

Like sets, templates can be combined, or even defined on-the-fly inside a rule, though at the time of
writing this feature has only be implemented for context templates, not for constituent templates. Note
that a separate set of parentheses is required for each level of template definition definition. For
instance, if you want a rule to act on either a left-hand human subject or a right hand object clause (not
possible in cg2), you can do so with:

SELECT (<v-hum>) ((*-1C HUM + @SUBJ>) OR (*1C @FS-<ACC)).

Here, two on-the-fly templates are OR'ed and encapsulated with a common set of parentheses. The
bidirectional *0 search is a special case of this, but only works with identical conditions both left and
right: REMOVE (VFIN) (*0C VFIN BARRIER CLB) ;

When using templates together with (external) BARRIER's, the template can be thought of as one
token – meaning that right-looking contexts with a template (*1 T:x BARRIER ...) will be interpreted
against the left edge of the template, while left-looking contexts (*-1 T:x BARRIER ...) will be
interpreted against the right edge of the template so as to avoid internal, unpredictable parts of the
template itself to trigger the BARRIER condition. Similarly LINK'ed conditions after a template will
depart from different edges of the template instantiation in the sentence, according to whether the

10 The only type of recursion currently supported is direct recursion withing the same definition, e.g. TEMLATE n-chain =
(N) OR (N LINK 1 N) OR (N LINK 1 T:n-chain)

Eckhard Bick, CG-3 how-to 4/2009

template was found by a right-looking or left-looking search. In the latter, a LINK will continue from
the left edge, in the former it will depart from the template's right edge11.

8. Set unification

CG3 allows the use of sets as to-be-unified variables, prefixing $$ before the set name. All occurrences
of such a set in a given rule will be unified to mean the same set member, and the rule operation will
only apply if the set does have a member that satisfies all occurrences of the set in both target and
contexts at the same time. Note that in ordinary mode the set is instantiated the first time it is met by the
rule parser: If this is not in the target but in a context position, the rule may be interpreted unintuitively
because the rule compiler does not normally respect context ordering, trying to optimize it for other
goals such as speed. Therefore, if a $$-set only occurs in contexts (and not in the target), the
KEEPORDER option should be used.

The following is an example for the unification of semantic roles (agent, patient, theme and location),
in a grammar with '§' as the mapping-prefix:

 LIST ROLE = §AG §PAT §TH §LOC ;
 SELECT $$ROLE (-1 KC) (-2C $$ROLE) ;

Set unification could be simulated in CG2 only at the cost of considerable rule explosion. Thus, our
example would have to be written with 4 rules instead of one:

 SELECT (§AG) (-1 KC) (-2C (§AG)) ;
 SELECT (§PAT) (-1 KC) (-2C (§PAT)) ;
 SELECT (§TH) (-1 KC) (-2C (§TH)) ;
 SELECT (§LOC) (-1 KC) (-2C (§LOC)) ;

So far, unification tags can only be used in targets and contexts, but not mapped:

not possible: MAP $$ROLE TARGET (N) IF (-1 KC) (-2 N + $$ROLE) ;

For many languages, a frequently used low-level unification concerns gender, number and case in np's:

 LIST GNC = (M S NOM) (F S NOM) (M P NOM) (F P NOM) (M S ACC) (F S ACC) (M P ACC) (F
P ACC) ; # with M = male, F = female, S = singular, P = plural, NOM = nominative ACC = accusative
 SELECT ADJ + $$GNC (*1C N + $$GNC BARRIER NON-ATTR) ;

Top level set unification: In some cases, especially ontology tag types, one may want to unify not
individual tags, but groups of tags, e.g. match hyponyms through their hypernym umbrella tag (or what
WordNet would call synsets). The following is an example involving VISL's semantic prototype tags:

 LIST <hum> = <H> <Hprof> <Hfam> <Htitle> <Hideo> ;
 LIST <animal> = <A> <Azo> <Aorn> <Aich> <Aent> ;
 LIST <tool> = <tool> <tool-cut> <tool-shoot> <tool-tie> ;
 LIST <food> = <food> <food-h> <fruit> <drink> ;
 SET SEMS = <hum> OR <animal> OR <tool> OR <food> ;

11 The ”relevant edge behaviour” of templates with external BARRIERs and LINKs is internally achieved in a somewhat
different way, but is a functionally correct description of surface rules.

Eckhard Bick, CG-3 how-to 4/2009

Such higher level sets, consisting not of tags or tag strings, but of a combination of other sets, can also
be unified, but have to be marked with a && prefix (rather than a $$ prefix) when used in rules:

 LIST @<FUNC = @<ACC @<SC @<OC @<SUBJ ;
 SELECT $$@<FUNC (0 &&SEMS) (*-1 (“and”) BARRIER NON-PRE-N LINK -1C $$<FUNC
LINK 0 &&SEMS) ; # selects a left pointing coordinated function (rather than opting for a clause break
and a right-pointing function), if 2 np's are of the same semantic class and separated only by “and”

The above is equivalent to 4 separate rules using $$<hum>, $$<animal>, $$<tool> and $$<food>,
respectively, instead of the top level SEMS set.

9. Numerical matches

For the first time, the new CG-3 formalism allows flexible integration of statistical data, frequency
thresholds and confidence values directly in the Constraint Grammar framework – a feature CG2 and
Vislcg could only approximate through the use of <Rare> sets and heuristic section chunking of
grammars. The option should be paving the way for hybrid systems integrating both hand-crafted
linguistic rules and raw probabilistic corpus data.

A numerical is of the type <TYPE:number>, where TYPE is a label, and number is an integer assigned
to TYPE. Examples are lexical frequencies drawn from a corpus, or confidence values in a spell or
grammar checker. CG contexts and targets can make use of the numerical tags with either =, < or >
plus the combinations >= and <=. Thus, on a relative lexical probability scale between 0 and 100:

REMOVE (<f<10> N) (0 (<f>60> V)) (1 N) ;

will remove noun readings with a lower-than-10% probability in the presence of a higher-than-60%
probability for a verb reading, if there is another noun candidate immediately to the right.

Minimum and maximum values can be selected or removed from a cohort by using MIN and MAX,
respectively. In its simplest form, this feature can be used as a last heuristics, after ordinary rules:

SELECT (<f=MAX>) ;

or

REMOVE (<f=MIN>) ;

Note that the former will also remove readings with no f-value given, while the latter will keep them,
following the intuitively most likely interpretation of the rules purpose.

Eckhard Bick, CG-3 how-to 4/2009

10. Regular expressions

Another innovation in CG-3 is the use of regular expressions for word forms, base forms and secondary
tags (<...> angle-bracketed tags). An interpretation of a tag as a regular expression is forced by
appending a 'r' after the tag:

● ”.*ize”r to match certain transitive verbs in English
● <[HA].*>r to match semantic prototype tags for animates, i.e. humans (e.g. <Hprof>) and

animals (e.g. <Aorn>).

Another literal string modifier, used in the same fashion as 'r', is 'i', indicating case-insensitivity. The
two can be combined, e.g. ”.....”ir .

Eckhard Bick, CG-3 how-to 4/2009

11. Grammar-text interaction

There are numerous possibilities in the CG-3 formalism to influence the interaction of the CG grammar
and its input data. Thus, parameters can be set in the grammar or command-line for

● triggering the use or non-use of certain rule sections
● changing window delimiters on the fly
● naming and referencing rules
● setting external, corpus-driven parameters on the fly, such as domain or genre

For these and other options, please refer to our CG-3 page on
http://beta.visl.sdu.dk/constraint_grammar.html where you can also find a CG laboratory interface to
test some of the options in this tutorial.

12. Tracing

Tracing of rule applications on a text texts allows the grammarian to debug his grammar.

As a default, rules are traced using their line number, but an optional rule name can be added to each
rule operator with a colon, e.g. REMOVE:rule_name. With the --trace-name-only command line
option, line numbers will be suppressed for named rules.

In ordinary tracing mode, removed lines will still be shown, but prefixed with a semicolon. To prevent
this behaviour, and see only surviving lines, use --trace-no-removed.

13. Binary grammars

The CG3 rule compiler can build binary grammars, rather than parse rules from scratch each time. The
two main advantages of binary grammars are (a) speed and (b) data protection, for commercial
applications.

vislcg3 -C UTF-8 -g rulesfile --grammar-only --grammar-bin binfile

A Perl support tool, cg3-autobin.pl – to be used instead of the ordinary vislcg3 command, with the
same command line options – will compile a grammar to binary form the first time and re-use that on
subsequent runs for the speed boost.

http://beta.visl.sdu.dk/constraint_grammar.html

Eckhard Bick, CG-3 how-to 4/2009

14. Sample rules file

The following is a sample file for a Portuguese Constraint Grammar. with the classical sections of
delimiters, sets, mappings and constraints. Note that the mappings sections is sandwiched between two
constraint sections – the first for part of speech and morphology, the second for syntax, the idea being
that mapping rules would apply to partially disambiguated cohorts rather than all readings. However,
since MAP rules are run before ordinary disambiguation rules, the placement of the MAPPING section
by itself does not have the desired effect. Rather, it is necessary to run the same grammar twice, as
consecutive modules with different section options, allowing mapping and post-mapping
disambiguation only in the second round:

cat cohort-file | vislcg3 -g grammar --sections=1 --no-mappings | vislcg3 -g grammar

For more complex grammars, this effect is usually achieved by using a multi-grammar architecture,
chaining separate grammars for different levels of annotation. In this case, set definition sections can be
shared with the INCLUDE option, which will cause the compiler to load an external file as if it had
been pasted in on the INCLUDE line:

INCLUDE set-section;

DELIMITERS = "<$.>" "<$!>" "<$?>" "<$\;>" "<$¶>" ; # sentence window

SETS

LIST ALL = N PROP ADJ DET PERS SPEC ADV V PRP KS KC IN ; # all word classes (but
not punctuation)

LIST NOMINAL = N PROP ADJ (PCP2 STA) ; # nominals, i.e. potentieal nominal heads

LIST PRE-N = ART DET NUM ADJ STA ; # prenominals

LIST NON-PRE-N = (*) - PRE-N ;

LIST NON-PRE-N/ADV = (*) - PRE-N - (ADV) ;

LIST P = P S/P ; # plural

SET PRE-N-P = PRE-N + P ; # plural prenominals, equivalent to (ART DEF) (DET P)
(DET S/P) (NUM P) ADJ (PCP2 STA) ;

LIST VFIN = PR PAST IMP ;

LIST VV = PR PAST INP INF AKT PAS ;

LIST CLB = "<,>" KS (ADV <rel>) (ADV <interr>) ; # clause boundaries

Eckhard Bick, CG-3 how-to 4/2009

LIST V-SPEAK = <vq> <Vcog> <speak> "answer" "say" "tell" ; # speech verbs

LIST @MV = @FMV @IMV &MV ; # main verbs

CONSTRAINTS

REMOVE (N P) IF (-1C PRE-N) (NOT -1 PRE-N-P) ; # remove a plural noun reading if
there is a safe prenominal to the left that is not compatible with a plural
reading

REMOVE VFIN OR INF (-1C ART OR (GEN)) ;

REMOVE VFIN OR INF (*-1C ART OR (GEN) BARRIER NON-PRE-N/ADV) ; # remove finte verb
and infinitive readings if there is an article to the left

REMOVE VFIN IF (*1 VFIN BARRIER CLB OR (KC) LINK *1 VFIN BARRIER CLB OR (KC)) ; #
remove a finite verb reading if there are to more finite verbs to the right none
of them barred by a clause boundary (CLB) and coordinating conjunction (KC).

"<that>" SELECT (KS) (*-1 V-SPEAK BARRIER ALL - (ADV)) ; # select the conjunction
reading for the word form 'that', if there is a speech-verb to the left with
nothing but adverbs in between.

MAPPINGS

MAP (@SUBJ> @ACC>) TARGET (N NOM) (NOT *-1 NON-PRE-N/ADV) (*1C VFIN) ;

MAP (@<SUBJ @<ACC @<SC) TARGET (N NOM) (*-1 VVC BARRIER NON-PRE-N/ADV) ;

MAP (@P< @>N) TARGET (N NOM) (*-1C PRP BARRIER NON-PRE-N/ADV) ;

MAP (@>N) TARGET (N GEN) ;

MAP (@SUBJ> @<ACC @P< @<SC @>N) TARGET (N NOM) ;

CONSTRAINTS

REMOVE (@SUBJ>) IF (NOT *1 VFIN) ; # remove a forward subject if there's no finite
verb to the right

REMOVE (@SUBJ>) IF (*1 CLB BARRIER VFIN) ; # remove a forward subject if there's no
finite verb to the right

	1. Command-line usage:
	2. The rules file
	3. The individual elements and functors of a CG grammar file
	3.2. Delimiters
	3.3. Set definitions
	3.4. Constraints
	3.5. Mappings
	3.6. Corrections/Substitutions

	4. Dependency
	5. Other relational links than syntactic dependency
	6. Interfacing with other descriptive systems and parsing methodology
	7. Templates
	8. Set unification
	9. Numerical matches
	10. Regular expressions
	11. Grammar-text interaction
	12. Tracing
	13. Binary grammars
	14. Sample rules file

