
1

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

NoDaLiDa 2023 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

WITH Context: Adding Rule-Grouping to VISL CG-3

Anonymous Author
Affiliation / Address line 1
Affiliation / Address line 2
Affiliation / Address line 3

email@domain

Anonymouser Author
Affiliation / Address line 1
Affiliation / Address line 2
Affiliation / Address line 3

email@domain

Anonymousest Author
Affiliation / Address line 1
Affiliation / Address line 2
Affiliation / Address line 3

email@domain

Abstract

This paper presents an extension to the
VISL CG-3 compiler and processor which
enables complex contexts to be shared be-
tween rules. This sharing substantially im-
proves the readability and maintainability
of sets of rules performing multi-step op-
erations.

1 Introduction

When writing constraint grammars for more com-
plex tasks, such as parsing or translation, situa-
tions often arise in which a particular context trig-
gers multiple operations. For example, when writ-
ing a dependency parser, the head of a word and its
grammatical function label are often determined
jointly. Similarly, for tasks such as translation that
involve modifying either the syntactic structure or
the linear order of the words, a change in one word
will typically necessitate changes to its dependents
as well.

One way to handle such cases in CG is to have
each operation repeat the entire set of contextual
tests, which is tedious to write, difficult to read,
and error-prone to maintain. Another way is to
add an initial rule which checks the conditions
and adds a label to the target word and then have
each other rule simply check for the appropriate
label. This, however, leads to a proliferation of
single-use tags in the grammar (which may need
to be documented), and does not solve the problem
that rules which operate on relationships between
words, such as SETPARENT or ADDRELATION
still need to duplicate contextual tests in order to
locate the second cohort.

To address these difficulties, we extend the
VISL CG-3 processor (Bick and Didriksen, 2015)
with the operator WITH, which matches a context
and then runs multiple rules, all with that same
context. An example is given in (1).

(1)

WITH (n) IF (-1* (det)) {
SETCHILD (*) TO (jC1 (*)) ;
SETCHILD REPEAT (*) TO
(-1*A (adj) LINK -1* _C1_) ;

} ;

Here the context being matched is a noun pre-
ceded at any distance by a determiner. The sub-
sequent rules are then run with the noun as their
target, so the target can be the any set (if a rule
specifies a target set, then it will only be run if
that set matches the target of the WITH). The rules
can refer to the cohorts matched by the contextual
tests of the WITH using either the position speci-
fiers jC1, jC2, ... jC9 for the first through ninth
tests, respectively, or using the magic sets C1 ,
C2 , ... C9 .

Thus the first SETCHILD attaches the deter-
miner (here matched with jC1 (*)) to the noun
and the second one finds any adjectives which
are between the noun and the determiner (here
matched with -1* C1) and attaches them to the
noun. By default, rules inside a WITH are run once
when the WITH, but REPEAT has the usual effect
of causing the rule to be repeated until it has no
effect.

A more extensive example, taken from an in-
progress rewrite of an existing parser, is presented
in Figure 1.

As these examples show, the WITH operator,
while not strictly increasing the expressivity of
CG, does allow many sets of rules to be written in
a much more readable and maintainable manner.

References
Eckhard Bick and Tino Didriksen. 2015. Cg-

3—beyond classical constraint grammar. In Pro-
ceedings of the 20th Nordic Conference of Computa-
tional Linguistics (NODALIDA 2015), pages 31–39.

2

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

NoDaLiDa 2023 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

Original rules

MAP @flat BigNumber + Number IF (-1 Number) ;
SETPARENT @flat + Number (NOT p (*)) TO (-1 Number) ;

MAP @conj Number
IF (-1 @cc LINK -1* Number BARRIER (*) - @flat) ;

SETPARENT @cc (NOT p (*)) TO (1 Number + @conj) ;
SETPARENT Number + @conj (NOT p (*))

TO (-1* Number - @flat BARRIER (*) - @cc - @flat) ;
REMCOHORT IGNORED WITHCHILD (*)

Number + @conj OR Number + @flat
IF (p Number) ;

Rules rewritten using WITH

WITH BigNumber + Number (-1 Number) (NOT p (*)) {
MAP @flat (*) ;
SETPARENT (*) TO (jC1 (*)) ;
REMCOHORT IGNORED (*) ;

} ;

WITH Number (-1 @cc) (-2 Number) (NOT p (*)) {
MAP @conj (*) ;
SETCHILD (*) TO (jC1 (*)) ;
SETPARENT (*) TO (jC2 (*)) ;
REMCOHORT IGNORED WITHCHILD (*) (*) ;

} ;

Figure 1: A set of rules for parsing Hebrew number phrases according to Universal Dependencies (Nivre
et al., 2020), with and without the WITH operator. The original set of rules is taken from the parser
described in Swanson and Tyers (2022). In each set, the first group of rules matches a phrase such as
מאה! שׁלושׁ “three hundreds” and makes the second word dependent on the first with the label flat. Then
the second group matches a phrase like וערבע! תשׁע “nine and four” and attaches the conjunction to the
second number and the second number to the first, giving the second number the label conj. Finally the
dependent words are ignored (treated as deleted for the remainder of parsing, but included in the output).

3

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

NoDaLiDa 2023 Submission ***. Confidential Review Copy. DO NOT DISTRIBUTE.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Jan Hajič, Christopher D. Manning, Sampo
Pyysalo, Sebastian Schuster, Francis Tyers, and
Daniel Zeman. 2020. Universal Dependencies v2:
An evergrowing multilingual treebank collection.
In Proceedings of the Twelfth Language Resources
and Evaluation Conference, pages 4034–4043, Mar-
seille, France. European Language Resources Asso-
ciation.

Daniel Swanson and Francis Tyers. 2022. A Univer-
sal Dependencies treebank of Ancient Hebrew. In
Proceedings of the Thirteenth Language Resources
and Evaluation Conference, pages 2353–2361, Mar-
seille, France. European Language Resources Asso-
ciation.

https://aclanthology.org/2020.lrec-1.497
https://aclanthology.org/2020.lrec-1.497
https://aclanthology.org/2022.lrec-1.252
https://aclanthology.org/2022.lrec-1.252

	Introduction

