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Abstract

This paper presents an extension to the
VISL CG-3 compiler and processor which
enables complex contexts to be shared be-
tween rules. This sharing substantially im-
proves the readability and maintainability
of sets of rules performing multi-step op-
erations.

1 Introduction

When writing constraint grammars for more com-
plex tasks, such as parsing or translation, situa-
tions often arise in which a particular context trig-
gers multiple operations. For example, when writ-
ing a dependency parser, the head of a word and its
grammatical function label are often determined
jointly. Similarly, for tasks such as translation that
involve modifying either the syntactic structure or
the linear order of the words, a change in one word
will typically necessitate changes to its dependents
as well.

One way to handle such cases in CG is to have
each operation repeat the entire set of contextual
tests, which is tedious to write, difficult to read,
and error-prone to maintain. Another way is to
add an initial rule which checks the conditions
and adds a label to the target word and then have
each other rule simply check for the appropriate
label. This, however, leads to a proliferation of
single-use tags in the grammar (which may need
to be documented), and does not solve the problem
that rules which operate on relationships between
words, such as SETPARENT or ADDRELATION
still need to duplicate contextual tests in order to
locate the second cohort.

To address these difficulties, we extend the
VISL CG-3 processor (Bick and Didriksen, 2015)
with the operator WITH, which matches a context
and then runs multiple rules, all with that same
context. An example is given in (1).

(1)

WITH (n) IF (-1* (det)) {
SETCHILD (*) TO (jC1 (*)) ;
SETCHILD REPEAT (*) TO
(-1*A (adj) LINK -1* _C1_) ;

} ;

Here the context being matched is a noun pre-
ceded at any distance by a determiner. The sub-
sequent rules are then run with the noun as their
target, so the target can be the any set (if a rule
specifies a target set, then it will only be run if
that set matches the target of the WITH). The rules
can refer to the cohorts matched by the contextual
tests of the WITH using either the position speci-
fiers jC1, jC2, ... jC9 for the first through ninth
tests, respectively, or using the magic sets C1 ,
C2 , ... C9 .

Thus the first SETCHILD attaches the deter-
miner (here matched with jC1 (*)) to the noun
and the second one finds any adjectives which
are between the noun and the determiner (here
matched with -1* C1 ) and attaches them to the
noun. By default, rules inside a WITH are run once
when the WITH, but REPEAT has the usual effect
of causing the rule to be repeated until it has no
effect.

A more extensive example, taken from an in-
progress rewrite of an existing parser, is presented
in Figure 1.

As these examples show, the WITH operator,
while not strictly increasing the expressivity of
CG, does allow many sets of rules to be written in
a much more readable and maintainable manner.
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# Original rules

MAP @flat BigNumber + Number IF (-1 Number) ;
SETPARENT @flat + Number (NOT p (*)) TO (-1 Number) ;

MAP @conj Number
IF (-1 @cc LINK -1* Number BARRIER (*) - @flat) ;

SETPARENT @cc (NOT p (*)) TO (1 Number + @conj) ;
SETPARENT Number + @conj (NOT p (*))

TO (-1* Number - @flat BARRIER (*) - @cc - @flat) ;
REMCOHORT IGNORED WITHCHILD (*)

Number + @conj OR Number + @flat
IF (p Number) ;

# Rules rewritten using WITH

WITH BigNumber + Number (-1 Number) (NOT p (*)) {
MAP @flat (*) ;
SETPARENT (*) TO (jC1 (*)) ;
REMCOHORT IGNORED (*) ;

} ;

WITH Number (-1 @cc) (-2 Number) (NOT p (*)) {
MAP @conj (*) ;
SETCHILD (*) TO (jC1 (*)) ;
SETPARENT (*) TO (jC2 (*)) ;
REMCOHORT IGNORED WITHCHILD (*) (*) ;

} ;

Figure 1: A set of rules for parsing Hebrew number phrases according to Universal Dependencies (Nivre
et al., 2020), with and without the WITH operator. The original set of rules is taken from the parser
described in Swanson and Tyers (2022). In each set, the first group of rules matches a phrase such as
מאה! שׁלושׁ “three hundreds” and makes the second word dependent on the first with the label flat. Then
the second group matches a phrase like וערבע! תשׁע “nine and four” and attaches the conjunction to the
second number and the second number to the first, giving the second number the label conj. Finally the
dependent words are ignored (treated as deleted for the remainder of parsing, but included in the output).
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