
Can you make a constraint grammar with only weights?

Flammie A Pirinen
UiT Norgga árktalaš universitehta

Institute of Languages and Cultures / Divvun
Tromsø, Norway

flammie.pirinen@iki.fi

Abstract
Traditionally, constraint grammar is orig­
inated as a system to deal with ambigu­
ity by means of disallowing and removing
readings that are unacceptable. However,
to judge a plausible grammatical parse
of a word­form as definitely unacceptable
given only one context condition is quite
risky. What I explore in this experiment is
an idea where constraint grammar’s judge­
ments are not strict but only give relative
ordering or plausibility. My hypotheses
are that originally the strict deletion sys­
tem of constraint grammar was at least par­
tially motivated by limitations of the hard­
ware decades ago, that we no longer have
to follow. Furthermore, the construction
of parsing system that loops indefinitely
on its own input until the output does not
change can be avoided when the weighted
constraint grammar rules are merely given
a single reweighting vote type feedback. In
this experiment, I have only implemented a
subset of constraint grammar, also forcing
the linguistic description to stick with rules
that are either directly related to a linguistic
evidence—giving a likelihood for a mor­
phological reading because we simultane­
ously connect it to a syntactic reading—, or
a pure disambiguation preference—when
forced to select between a and b, a is more
likely unless specifically supported by c.
I present an experimental usage of the re­
sulting parsing system as a tool for pars­
ing corpus into dependency treebank that
is post­edited and verified by human.

1 Introduction

One of the most traditional use cases of constraint
grammar is based on having all plausible morpho­
logical analyses of word­forms in a sentence as a

starting point, and reducing the ones that are gram­
matically unsuitable or unlikely (Karlsson, 1990).
However, writing grammatical rules that express
absolute certainties are quite hard to write, and it
turns out, that in many mature constraint gram­
mar descriptions average rules span several maybe
even dozen of lines, with more and more contexts
and exceptions added along the years. This makes
the rules sometimes hard to read andmaintain. I’ve
been working with such rulesets for several years
and my impression is that majority of the extra ex­
ceptions that are being added seem like they are of­
ten exceptional interactions that get copied to sev­
eral or even most of the rules in the ruleset, this
is one reason why I began experimenting with the
idea that maybe encoding such exceptions as new
reweighting rules would make sense.

I believe one of the reasons of the idea for con­
straint grammar to operate on absolute deletion of
readings while disambiguating is based on optimi­
sations which were necessary at the time, a com­
putational requirement that is no longer as critical
as it was. On the other hand, when experiment­
ing with the weighting constraint grammar logic
implementation, I found out I could manage with
single pass over the sentence, since readings are
not removed and rules do not feed on the weights
previously used, it can also be quite fast.

Instead of using the existing constraint gram­
mar system I have performed this experiment with
a re­implementation of the rules and grammars in
python. I have limited my re­implementation to a
few rule­types that are most common and also the
ones that I find make sense linguistically; one of
my design goals in this experimetn is to write a sys­
tem that encodes linguistic knowledge into gram­
mars and their parses and clean up some hackier
components of our grammars altogether. The main
functionality in my grammar system is based on
SELECT, IFF, and REMOVE logics, but instead of
operating on removal of readings, we operate on



giving the not­removed reading weight (penalties1
The rules I have implemented can have zero or one
contexts, if they have zero contexts (or only con­
text is the same cohort), they are local disambigua­
tion preferences; I implemented this first because
they are one of the most common types of rules
in mature cg rulesets, and most useful in disam­
biguation tasks; they are linguistically kind of mo­
tivated, since it is natural to say things like: “if you
have to decide between instructive and genitive,
prefer genitive” or “if you have to decide between
‘a dog’ and ‘a clothesmoth’ prefer dog”; I find also
linguistically more pleasant to say than: “instruc­
tives (that clash with genitives) do not exist!”,
or “you may never speak about ‘a clothes moth’
(where it clashes with forms of dog)”. The other
form of rule where we have one context is a kind
of linguistic evidence rule; my impression is that
most well­formulated rules are based on linguistic
evidence, for this reason I have made them work
on reweighting and dependency drawing principle.
This means if you have a rule of disambiguating or
selecting, say accusative reading because there’s
a verb reading in the sentence on the left, it also
must mean that, e.g. the accusative must have an
obj dependency to that verb (or from, depending
on your dependency grammar preferences).

Some of the potential use cases for this type
of grammars are: machine translation, treebank­
ing, grammar­checking and correction, with hu­
man in the loop, etc. We have performed some
initial experiments with dependency treebanking:
the sentences with all possible readings shown to
the post­editor and annotator, they can easily se­
lect the highest ranking tree, or remove some read­
ings, or edit the tree by hand with a text editor in
CONLL­u format. In future experiments I could
foresee using the future revisions of the system in
machine translation such that we do not have the
problem of early disambiguation hiding the read­
ings that would be useful or just flat out creating a
system that can produce n­best translations instead
of one. For grammar­checking and correction sim­
ilarly we currently have specialised grammars that
work very carefully to avoid removing information
that will be useful further down in the pipeline to
provide corrections.

1I use the word weight throughout the article to mean
penalty weight, as is standard in e.g. weighted finite­state al­
gorithms, I know that in other sub­fields of NLP some extra
weight can be a positive thing, s.t. heavier is better, but in my
systems more weight always means worse.

References
Fred Karlsson. 1990. Constraint grammar as a frame­

work for parsing running text. InCOLING 1990 Vol­
ume 3: Papers presented to the 13th International
Conference on Computational Linguistics.


